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ABSTRACT

In this paper convergence of finite-dimensional controllers for infinite-dimensional sys-
tems designed using approximations is examined. Stable coprime factorization theory is
used to show that under the standard assumptions of uniform stabilizability/detectability,
the controllers stabilize the original system for large enough model order. The controllers

converge uniformly to an infinite-dimensional controller, as does the closed loop response. (
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1 Intro-uction
We consider semigroup control systems on a Hilbert space X:
z(t) = Az(t) + Bu(t), (1)

y(t) = Cz(1),
z(0) = zo, zo € D(A) C X.

The operator A generates a strongly continuous semigroup of operators S(t) on X so A is
closed with domain D(A) dense in X. We assume bounded control and observation, and
that the input and output spaces are finite-dimensional: B € B(R™, X),C € B(X, RP). This
control system will often be abbreviated (A4, B, C). For control functions in £4(0, 00; R™) we

interpret the solution of (1) in the mild sense:
t
y(t) = CS()zo + C / S(t — 7)Bu(r)dr.
0

Further details can be found in, for instance [14].

The equations (1) are a model for a number of control problems, including those where
the system dynamics are described by partial differential equations and hereditary differential
systems. A closed form solution can be computed only in the simplest of situations. In
general, it is necessary to use an numerical approximation to the semigroup control system
(1) in order to simulate the response of the system . This approximation will typically be a

system of n ordinary differential equations, which we write as
z(t) = Anz(t) + Buu(t), (2)
y(t) = Caz(t),
z(0) = zon.

This approximation is also used to compute controllers for the original system (1). Further
details on the approximation scheme will be presented in a subsequent section. The above
finite-dimensional system will often be abbreviated as (An, Bs, Ch).

In this paper, we are concerned with finite-dimensional controllers of the form
2(t) = (An — BaKa)2(t) + Fa(y(t) — Caz(t)) 3)

Un(t) = Knz(t).

There are a number of convergence questions associated with this approach:




e Does the controller (3) stabilize (1) for large enough n?

e Do the controllers (3) converge to an infinite-dimensional controller?

e What relation does the closed loop performance of the controller (3) with (A,, By, Cy)

have to its implementation with the original system (A, B,C)?

Convergence in the graph topology [18, 19] of the approximating systems to the origi-
nal system is necessary for the validity of an approximation scheme as a basis for controller
design. Convergence in the graph topology is equivalent to convergence of a sequence of
coprime factors (N,, D,) for the approximations to a coprime factorization for the original
system. Without such convergence it cannot be concluded that a controller which stabi-
lizes (A, B,C) also stabilizes (An, By, C,) for sufficiently large n, or that the closed loop
responses converge. In fact, in the absence of convergence in the graph topology, the set of
controllers which stabilize both the infinite-dimensional system (A, B,C) and the approxi-
mations (A,, By, C,) may be empty, even for large n.

In this paper this approach is used to obtain complete answers to the above questions
for a wide class of systems. A complete answer to the problem of convergence of LQG type
controllers is given. Although the graph topology is the fundamental topology underlying
these convergence questions, it is not used explicitly in this paper. All results are derived
directly using only theory on Bezout, or stable coprime factors. First, some background

material on stable coprime factorizations is given.

2 Stable Coprime Factorizations

Suppose a system of the form (1) with zo = 0 maps inputs in £;(0,00, R™) to outputs in
L,(0, 00, RP), and that furthermore, there is a maximum ratio, the £,-gain between the norm

of the output and the norm of the input:

Il y”£2(o,oo,Rp) <l u”C;(O,oo,R"‘)'

Then the system is said to be L£;-stable, and by the Paley-Weiner Theorem, the Laplace
transform of such a system is a matrix with entries in H,, . Here H,, indicates the Hardy
space of functions G(s) which are analytic in the right-half plane Re(s) > 0 and for which
sup sup |G(z + jw)| < oo.
w >0

The norm of a function in H, is

IFGlloo = supsup |Gz + jw)l.

]
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We denote matrices with entriesin H,, by M( H,, ). The norm of a function in M( He, )
is the induced matrix norm

| Gl = sup sup & [G(z + jw)]

where & denotes the largest singular value.

The Laplace transform of a linear time-invariant system such as (1) is called its
transfer function and is given by C'R(s; A)B where R(s;A) indicates the resolvant of A.
Suppose G is the transfer function of a given system, for which we wish to design a controller
with transfer functic» H, of compatible dimensions, arranged in the feedback configuration

shown in Figure 1.
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Figure 1. Feedback System

The 2 x 2 transfer matrix A(G, H) which maps the pair (ry,r;) into the pair (e, €;) is given
by

(I+GH)"' -G+ HG)™
A(G, H) =

H(I+GH)™? (I+HG)?!

The feedback system, or alternatively the pair (G, H), is said to be externally stable if each
of the four elements in the above matrix belongs to the set S of stable transfer functions. We
could define stability in terms of the transfer matrix from (ry,r2) to (y1,y2); both notions of
stability are equivalent [19]. Definition of S depends upon the application. Thus the closed
loop system is L,-stable if and only if all four elements belong to M( H, ). The set of all
plants which stabilize G is written S(G):

Note that the present definition of stability is symmetric in G and H. Thus G stabilizes H
if and only if H stabilizes G.

For the common situation where the system is already stable and an aim of controller
design is to improve the settling time of the system, we specify a real number & > 0 which

is the minimum acceptable stability margin. Then a system is said to be input/output




o -stable if its shifted transfer function G(s — &) is in M( H ). Equivalently, we replace
He by the algebra Hy,, of functions which are analytic in the right half plane Re(s) > —o,
and for which

sup sup |G(z + jw)| < oo

W >—-0
with corresponding norm.
Much of modern control theory is concerned with coprime factorizations of systems.
The transfer function of a possibly unstable system G is written as the ratio of two coprime
stable systems. For the case of £;-stability, the transfer function of a system is written as
G = ND! where N,D € M( Ho ) and there exists X,Y € M( Ho ) with

X(s)N(s)+Y(s)D(s) =1, Re(s) > 0. (4)

(N, D) is called a right coprime factorization (r.cf.) for G. Left coprime factorizations
(Lc.f.’s) are defined similarly. (N, D) is a Lcf for G if G = D' N where N,D € M( Hy )
and there exists X,V € M( Ho, ) with

N(s)X(s) + D(s)Y (s) = I, Re(s) > 0. (5)

Every system which is described by a system of linear time-invariant ordinary differential
equations has both a left- and a right-coprime factorization. (This is a consequence of the fact
that the transfer functions of such plants are composed of rational functions.) Furthermore,
the set of all stabilizing controllers for such plants may be described in terms of the Youla

parameterization; a controller H externally stabilizes G if and only if it can be written
H=(Y-RN)™X +RD), |Y-RN|#0,Re M(H) (6)

where X,Y, N, D are as defined in (4), (5). The set of all stabilizing controllers for a given
system G are parameterized by R , as R ranges over all stable systems. In other words,

S(G) = {(Y = RN)"{(X + RD), |Y —RN|#0,R€ M( Hs )}. (7)

The above formulation (7) is in terms of left coprime factors of the stabilizing con-

trollers. The same family, S(G) may also be written in terms of right coprime factors:
S(G) = {(X +DQ)(Y — NQ)™, |V - NQ|#0,Q € M( Ho )}. (8)

Unfortunately, more general systems, which do not have rational transfer functions, do not
necessarily have either a left- or a right-coprime factorization. However, any system with a
transfer function which can be written as a fraction ND~', N, D € M( H,, ), is stabilizable




if and only if it has right (and left) coprime factorizations {16} . For systems of the type (1),

the theory is more complete. First, some definitions are required.

Definition 1.1: The C,-semigroup T'(¢) is stable if there exist constants M and
a > 0 such that ||T(¢)]| < Me™® for all t > 0.

Definition 1.2 A semigroup control system (A, B, C)is said to be internally stable if
the semigroup generated by A is stable according to Definition 1.1 .

Definition 1.3: The pair (A, B) is stabilizable if there exists a bounded linear oper-
ator K : X — R™ such that A — BK generates a stable semigroup.

Definition 1.4: The pair (4, C) is detectable if there exists a bounded linear operator
F : R? — X such that A — FC generates a stable semigroup.

Definition 1.5: The system (A, B,C) is jointly stabilizable/detectable if (A, B) is
stabilizable and (A, C) is detectable.

The extensions to o-stable, o-stabilizable etc. are straightforward.

Jointly stabilizable/detectable systems (A, B,C) have both left and right coprime
factorizations [5]. Let K be such that A — BK generates a stable semigroup and F' such
that A — F'C generates a stable semigroup. Define

N(s) =CR(s,A— BK)B, (9)
D(s) =1- KR(s,A— BK)B, (10)
X(s) = KR(s,A— FC)F,

and
Y(s)=I+ KR(s,A— FC)B,

XN+YD=1

(N, D) is a r.c.f for the system i.e. CR(s; A)B = ND~! [10] and the Youla parameterization
describes all stabilizing controllers for these systems. A l.c.f. can be defined similarly, using

an operator F' such that A — FC generates a stable semigroup . Define
N(s)=CR(s,A~ FC)B

D(s)=1-CR(s,A— FC)F.
Then, G(s) == D~'(s)N(s) and

~ o~

X+DY =1
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for some X,Y € M( He, ).
It is easy to show, using the Hille-Yosida Theorem, that internally stable control
systems (1) are externally stable. We are also assured that external stability implies internal

exponential stability:

Theorem 2.1 [10] A jointly stabilizable/detectable semigroup control system is internally
stable if and only if it is externally stable.

This equivalence justifies the use of controller design techniques based on system
input/output behaviour for infinite-dimensional systems of the form (1). The discussion

above is summarized in the following theorem.

Theorem 2.2 Assume (A, B,C) is jointly stabilizable/detectable and let G be the transfer
function of the system. We say that a controller with transfer function H stabilizes G if the
closed loop matriz A(G,H) € M( Hy ). Then H stabilizes the system, if and only if , its

transfer function can be written using the Youla parameterization (7) (or (8 ) ).

Also, if the state-space representations of the systems G and H are each stabilizable
and detectable, then H stabilizes G, according to the definition at the beginning of this

section, if and only if the closed loop is also internally stable.

Theorem 2.3 [10] Assume (A, B,C) is jointly stabilizable/detectable and that H is a con-
troller with a jointly stabilizable/detectable realization (A., B.,C.). The closed loop system
is input/output stable if and only if it is internally stable.

The following is by now well-known, and several proofs exist. One version, which uses

coprime factorizations, and which first appeared in {13] is given here.

Theorem 2.4 Every jointly stabilizable/detectable system (1) is stabilizable by a finite-

dimensional controller.
Proof: Both the stable factors N, D have well-defined limits at infinity:

lim &(N(s)) =0, lim @(D(s)) =1.
Re(930 Ret930

It follows (Mergelyan’s Theorem) that each factor can be approximated by a rational element
of M( Hy, ): for any € > 0 we can find rational N,, D, € M( He ), with

| N(s) — Na(s)lloo < & || D(s) — Dn(s)ll, <€




For sufficiently small €, (N,, D,) is also a coprime pair. Let (X,Y) be a lc.f of any
finite-dimensional controller which stabilizes N,D,™! with XN, + YD, = I. Then, if €
is small enough, Y~ X also stabilizes the infinite-dimensional system since XN + YD = U
where U has an inverse in M( H,, ). Rewriting, we have X(NU™!) + Y(DU™!) = I. Since
(NU-Y,DU-!) is ar.c.f. for the infinite-dimensional system (1) , it follows that every jointly
stabilizable/detectable control system (1) is stabilizable by a finite-dimensional controller.
a

3 Approximation Scheme

In this paper we are interested in the case where a finite-dimensional controller is designed
using a numerical approximation to the original system.

Suppose we have a sequence of finite-dimensional subspaces X, C X where the norm
on X, is that inherited from X. Define P,z as the orthogonal projection of z € X onto the

finite-dimensional subspace X,. We assume the following:

(A1) The projection operators P, converge strongly to the identity on the Hilbert space X.
That is, for all z € X

lim || Foe — 2| =v.
n—o0
For each X, the approximating system is (A, B, Cy):
B, :=P,B, Cn = Clxa,

and A, is an approximation to A which satisfies the two assumptions (A2) and (A3) below.
Note that the operators A,, B,.C, and the semigroup T,(t) generated by A, are operators
on X,.

A core C of a closed operator A is a linear space contained in the domain of A with
the property that the set of elements (z,Az), z € C is dense in the graph G(A) of the
operator A ([11], pg. 166).

(A2) We assume that there exists a core C for A such that
lim [P Az — A Pzl =0, forallzeC. (11)

Such an approximation scheme is said to be consistent.
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(A3) We will further assume that the semigroups T,(t) generated by A, are uniformly
bounded, that is, there exist real numbers N, M > 1 and k such that

IT.(t)l| < Me* for alln > N. (12)

(Uniform boundedness of the approximate semigroups is generally referred to as “sta-

bility” in the numerical analysis literature.)

Consistency and uniform boundedness are sufficient for convergence of the approxi-
mation [11, 14] i.e., for all € > 0,¢ > 0 and for all € X there exists N such that

|P.T(7)x — To(7)Paz|| < € for all 7 € [0,¢] and n > N. (13)

Assumptions (A1)-(A3) are satisfied by typical approximation methods. They are
sufficient to ensure that the open loop response of the systems G,, approximate the response of
G. (Al) is of course redundant in that it is implied by (13). Assumption (A2) may be replaced
by a requirement of strong convergence of the resolvants. (Trotter-Kato Approximation
Theorem eg. [14]). However, these assumptions are not sufficient to ensure convergence
of the closed loop response. An example of a scheme which approximates the open loop
response of a system but is not satisfactory as a basis for controller design is given in [4].

The appropriate topology in which to establish convergence of the approximations is
the graph topology. The importance of the graph topology in controller design is due to the
following result: A family of plants G, can be robustly stabilized by a compensator H which
stabilizes a nominal plant G if and only if G, converges to G in the graph topology. Fur-
thermore, in this case, the closed loop response of the feedback pair A(G,, H) converges to
A(G, H). In order to obtain convergence of the closed loop response A(Gr, Hn) to A(G, H)
for some H € S(G), H, must also converge to H in the graph topology. The results given
in this paper can be shown directly using the coprime factorization theory outlined in the
previous section. The graph topology is not directly discussed further in this paper, although
it is the topology underlying the convergence results. The interested reader is referred to [19]
for an introduction, [20] for extensions to general algebras, [12] for its application to approx-
imation of semigroup control systems, and [6] for robust stabilizablity under perturbations
in the coprime factors.

Suppose that the approximation scheme also satisfies assumptions of uniform stabil-
izability, and uniform detectability:

(A4) If the original system is stabilizable, then the approximations are uniformly stabi-

lizable: there exists a uniformly bounded sequence of operators {K,} such that for




sufficiently large .v, the semigroups S.(t) generated by A, — BnA, are uniformly
bounded by Me=! for some M > 0,a >0 and all n > N.

(A5) If tle original system is detectable, then the approximations are uniformly detectable:
tnere exists a uniformly bounded sequence of operators {F,} such that for sufficiently
large N, the semigroups S.(t) generated by A, — F,C, are uniformly bounded by
Me2t for some M > 0,a >0 and all n > N.

Common approximation schemes for several important classes of systems which sat-
isfy these assumptions are given below. Not only do both approximation schemes discussed
below satisfy assumptions (A1)-(A5), there exists a sequence of operators A, which sat-
isfy assumption (A4) and which converge strongly to an operator K € B(X,U). Similar
convergence exists for a sequence of operators F,, which satisfy assumption (A35).

3.1 Hereditary Systems

Consider the delay functional differential equation
0
i(t) = /hdr)(r‘)x(t +7)+ Bu(t), t20 (14)

y(t) = Cx(t),
z(0) = 2o, 2(7) =9(7),-h <7 <0

where z(t) € R",y(t) € RP,u(t) € R™ and B and C are matrices of appropriate dimension.
Also, n(r) is function of bounded variation taking values in R**" with n(r) = 0 and 7(r)
is left continuous for —h < 7 < 0. Defir..ng the state-space X = R" x Lo(—h,0; R"), the
hereditary system (14) can be formulated as a control system of the form (1) [2].

Define the finite-dimensional subspaces of X to be

XN = {(qS,,ng) € X; ¢a(7) = 2, _th <r< :-Lj\;——l—)h, j=1,...Nwherez; € R”}.
The finite-dimensional Galerkin approximation to (14) derived using these subspaces satisfies
assumptions (A1)-(A3) [2, 15]. This scheme is known as the averaging approximation to (14).

In [8] it is shown that this scheme is uniformly stabilizable and detectable: assump-
tions (A4) and (A5) are satisfied . It is also shown that the stronger version of (A4) and
(A5) holds. For a bounded operator K such that A — BK generates a stable semigroup, we
can choose K, = K P,, K, satisfies (A4) and lim,_.o || K — K|l = 0. Similarly, if (14) is
detectable, we can choose a sequence F,, — F where A — FC generates a stable semigroup

and F, is a sequence which satisfies (A5).




3.2 Sectorial Operators

Define A through a continuous sesquilinear forma: V x V ~,C

(—A¢,¥) = a(¢,¥), ¢E€DA),YeV. (15)

where (-,-) indicates the inner product on X, V is a Hilbert space , D(A) C V and V is
densely and continuously in X. In order to avoid confusion with the norm on X, the norm
on V will be indicated by || ||,,. Identify X with its dual so that VX = X'—V'. We
assume that in addition to (13}, a(,) satisfies Harding’s inequality: there exists k£,¢ > 0 such
that

a(u,u) + k(u,u) > ol ull,”. (16)

The inequalities (15) and (16) guarantee that A generates an analytic semigroup with bound
| T < e*.

Further details may be found in [17]. Assume that the approximating subspaces X, satisfy

a V-approximation property: for all z € V' there exists a sequence z, € X, with
(H1) Jim || 2, — 2y = 0.

It is shown in [12] that this class of semigroup control systems, with a sequence of ap-
proximating subspaces which satisfy assumption (H1), leads to a sequence of approximating
control systems which satisfy assumptions (Al)-(A5) of the previous section. Furthermore,
as in section (3.1) we can choose K,,F, sothat K, - K and F, — F.

Note that it is only required that projections onto X, converge in the V-norm. A

similar result in [8] requires an inverse approximation property:
inf || R(s; A)z = 2lly < el 2l

nf |l Ris; A" )z =zl < )] 2lix

where €;(N),e2(N) — 0 as N — oo. These conditions are stronger, and more difficult
to verify than (H1). Furthermore, the above conditions can only be satisfied if R(s; A) is
compact. Problems such as control of structural vibrations 'vith Kelvin-Voigt damping are
thus excluded.
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4 Controller Convergence

It will now be shown that if both (A4) and (A5) hold in addition to the usual (Al)-(A3),
then for large enough model order, the finite-dimensional controllers stabilize the semigroup
control system (1). If a stronger version of (A4) and (A5) holds, then the controllers con-
verge uniformly ( in M( Hs ) to an infinite-dimensional controller, and the closed loop
performance obtained with the finite-dimensional controllers converges to the closed loop

performance obtained with the infinite-dimensional controller.

Theorem 4.1 Assume the semigroup control system (1) is jointly stabilizable/detectable
and that the approzimations used in design of the finite-dimensional controllers (3) satisfy
assumptions (A1)-(A5). Denote the transfer functions of the controllers by H, and the
transfer function of (1) by G. Assume, in addition, that the feedback operators K, converge
strongly to an operator K € B(X,U):

lim K, P,z = Kz, z € X.

n—00

Then, for sufficiently large n, H, stabilizes the infinite-dimensional system G. For such n,

the operators
A -BK,

An=|p o A —B.K,—F.C,

(17)
generate stable semigroups.

Proof: Define
Xn(s) = K R(s, A, — F,C,)F,

and
Y.(s) =TI+ K,R(s, A, — F,C,)B,.

It is well-known (eg. [19]) that (X,,Y3) is a l.c.f. for the finite-dimensional controller H,,
and that
XeNn+ VoD =1

where (N, D,) is the r.c.f of G, defined by (9) and (10) using the stabilizing feedback
operator K.

It is clear from the assumptions that
| [(Xa Yalllo < M

for some constant M. Let (N, D) be the r.c.f. of G defined by (9) and (10) using the stabil-
izing feedback controller K. It was shown in [12] that limp~e N, = N and lim,oo D,, = D

11




and so, for sufficiently large n, say n > n,,

N - N,

] ol [ NRS S

It follows that
U.=X.N+Y,D

has an inverse in M( Hy ) for n > n,.
The closed loop matrix A(G, H,,) can be written in terms of G = ND~! and H, =
Y, ' X, as
I-NU'X, —-NU;'Y,
DU X, DU'Y,
Since A(G, H,) € M( H ) the closed loop system is, by definition input/output stable. It

is trivial to show that A,, is the infinitesimal generator for the closed loop system. Internal

A(G, H,) =

stability of the closed loop follows from the fact that the controller is stable and Theorem
2.3. Hence, A,, generates an exponentially stable semigroup. Alternatively, it can be shown
directly that the closed loop system is stabilizable and detectable and Theorem 2.1 applied.
O

The dual situation, where K, is bounded and F, converges strongly to an operator
F, can be shown identically, using convergence of a sequence of l.c.f’s of the systems G,

and boundedness of r.c.f.’s of the compensators H,,. We also have the following:

Corollary 4.2 Let o be as in assumptions (A4)-(A5) and let o be any real number,
a >0 > 0. For n sufficiently large, the operator A,, (17) generates an o-stable semigroup.

Proof: As a consequence of assumptions (A4) and (A5) we can replace input/output stability
and internal stability by input/output o-stability and internal o-stability in the previous
theorem. The algebra M., is replaced by the shifted algebra Ho,. D

Theorem 4.3 Assume that the approzimation scheme satisfies assumptions (A1)-(A5) and

that the compensator design sequence is convergent:
lim K, P,z = Kz,
n—oo

forallz € X and

lim Fry = Fy

n—oco

for all y € R? . Let H denote the transfer function of the infinite-dimensional controller
whose state-space realization is

3(t) = (A — BK)z(t) + F(u(t) - Cz(t)) (18)

12




y(t) = Kz(t).

The controller transfer functions H, converge in M( Ho ) (i.e. uniformly in s) to H.

Proof: We first show that l.c.f. ’s of the controller converge:

lim || X — Xa|l_ =0, lim| Y=Y, =0.

n—oo n—o00

Define X,,Y, as in Theorem 4.1 . Denoting the semigroup generated by A, — F,,C, by

SFn(t), the time-domain representations of these transfer functions are
Xa(t) := KnSra(t)Fy,

Y,(t) := 8(t)] + KnSra(t) B,

where 6(t) denotes the Dirac delta distribution. Define
X(t) :== KSr(t)F,

Y(t) :=6(t)] + KSr(t)B.
The proof is identical to that used to show convergence of coprime factors of the approxi-
mating systems in [12). Due to convergence of K, to K, and F, to F, we can show that,

lim [~ || Xa(t) = X(O)llgmardt = 0,

n—o0 Jo

o
Jim [T Ya(t) = Y(Ollgmand = 0
where R™*? indicates some norm on operators from R™ to RP. Convergence in this norm
implies convergence of the Laplace transforms of these functions in M( ‘H, ). Each controller
H, and the infinite-dimensional controller H are stable (elements of M( Ho )). This implies
that, Y., Y are invertiblein M(Ho) and since limpo || Yo — Y|, =0,

lim 1Yo = Y7l =0

and H, converges to H in norm. (This reflects the fact that the uniform topology is the
restriction of the graph topology to stable systems.) Since (X,Y’) is a Lc.f. for the infinite-
dimensional controller H, the result follows. O

Note that the controllers actually converge in the stronger norm:

im [ || Ha(t) = H(t)|| gmepe™dt = 0,
0

n—oo

where a >~ >0 (a asin (A4) and (A5)) although this is not used here.
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Corollary 4.4 The closed loop operator A(Gn, Hy,) converges in M{ Hy, ) to A(G, H).

We can write the closed loop operator A(G, H) in terms of stable coprime factors as

A(G,H)z[I—NX —NY]

DX DY

and similarly,

MGy = | 1N .

DnXn DY,
The result now follows from convergence of the coprime factors. O
Thus we have shown uniform convergence of the controllers to an infinite-dimensional

controller, and similar convergence of the closed-loop systems.

4.1 LQG Optimal Control

Commonly, a compensator of the form (18) is designed in two steps, through construc-
tion of an optimal regulator and an optimal detector. Assume that (1) is jointly stabiliz-
able/detectable, so that construction of an internally stable closed loop is possible.

If @ is a self-adjoint positive semi-definite operator and R is self-adjoint positive

definite, then the optimal solution of
Jw) = [7(Qu(t), 2(®)x + (Ru(t), u(t)t

is given by the feedback u(t) = —Kz(t) where K := B* R7'II and II is the unique, non-

negative, self-adjoint solution of the algebraic Riccati equation,

(A*TI+TA-TNBR B*11+Q)z=0, forall z€ D(A). (19)

The operator A — BK generates a stable semigroup on X.
Similarly, we may obtain the observer gain F’ by solving the dual problem

AL+ XL A* —SC*R;'CT+Q,=0 (20)

where @), is self-adjoint positive semi-definite and R, is self-adjoint positive definite. Setting
F =X C* R;! where ¥ is the unique, nonnegative, self-adjoint solution to the above Riccati
equation, A — F'C generates a stable semigroup on X.

Since the above infinite-dimensional Riccati equations cannot be solved exactly, ap-
proximate solutions are calculated by using the approximations A,, B,,C,. Thus, if the ap-

proximations are stabilizable, we obtain K, = R~! B; I, where II,, solves, for Q,, = P,QP,,

A 1, + M, A, — 0,B.R™" B: I, + Qn = 0. (21)

L
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Similarly, if the approximations are detectable, the operators F,, = £, C: R;! are found by
solving, for Qun = PaQoFPn,

ApnZn +E, AL — 5, C: RJ'ChE, + Qon = 0. (22)

The theory on convergence of solutions of approximating Riccati equations is fairly
complete, and we can state the following which is a consequence of 3] and the theorems in the
previous section. Convergence of the solutions requires that the adjoint semigroups S, (¢)
converge strongly, uniformly on bounded intervals, to S*(t). This assumption, together with
(A1)-(A5) implies the stronger versions of (A4) and (A5) required for Theorems 4.1-4.3.

Theorem 4.5 Assume that the approzimation scheme satisfies the usual (A1)-(A3) and that
it is uniformly stabilizable (A4) and uniformly detectable (A5). Assume also, that for every
z € X, the adjoint semigroups S (t) converge strongly, uniformly on bounded intervals, to
S* (t):

lim sup || S: (t)Pux — P, S* (t)z}| =0, T >0. (23)

n=0 0<t<T

Then:

1. The controller (3) obtained by solving the finite-dimensional ARE’s (21) and (22) to

obtain K,, F, stabilizes the infinite-dimensional system for all sufficiently large n.
2. This closed loop system is internally o-stable, for any o < a.

8. The controller transfer functions converge uniformly (i.e. in M( He )) to the trans-
fer function of the optimal regulator/observer (18) obtained by solving the infinite-

dimensional ARE’s.

4. The closed loop operator A(G,, H,) converges uniformly to A(G, H).

Proof: Tt has been shown (3] that these assumptions are sufficient to guarantee that
limp—o, K,z = Kz and that limn—e Fny = Fy and that these feedback operators yield
uniformly stable semigroups : (A4) and (A5) are satisfied. The conclusions now follow

immediately from Theorems 4.1-4.3 . O
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5 Conclusions

A similar result to Theorem 3.1 and Corollary 3.2 has been shown in [8]. However, the use of
coprime factorizations leads to a considerably shorter proof. Also, the results in [8] depend
on several assumptions that are not required here. Unlike [8], the spectrum determined
growth assumption not required at any point. Furthermore, both classes of approximation
schemes discussed in [8] have the property that the resolvants of the approximations converge

in norm to the original resolvant:

and this property is used in the proofs. This restricts the class of systems under consider-
ation to those with compact resolvants, and the approximation scheme to those with this
convergence property. As demonstrated here, these assumptions are not necessary.

The results here showing uniform convergence of a sequence of controllers, and of the
corresponding closed-loop systems, have not been previously obtained. Gibson and Adamian
(7] study the problem of convergence of LQG controller design for flexible structures, when
the controller is designed using approximations to the solution of the partial differential
equation describing the vibrations. Numerical results in [7], for finite-element approximations
to structural vibrations indicated convergence of the controller transfer functions, but the
authors were unable to prove Theorem (4.3) in the general case.

One important consequence of convergence of the controller transfer functions, is that
it justifies the use of such order reduction methods as Hankel norm reductions, balanced trun-
cations, and coprime factor reduction. The order of the approximation (2) could be increased
until the controllers (3) have converged sufficiently in M( Ho ). The numerical results in
[7] for control of structural vibrations indicate that at least in some cases, convergence is
obtained fairly quickly. The controller order can then be reduced using a standard technique

such as balanced realizations.
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